Logo

Narośla na pędach przyczyniły się do powstania GMO

Do opracowania technologii tworzenia roślin modyfikowanych genetycznie (GMO) doprowadziły naukowców badania bulwowatych narośli, jakie występują np. na drzewach! O tym, skąd naukowcy wiedzą, jak modyfikować genetycznie rośliny, opowiada prof. Danuta Maria Antosiewicz.

"Badania naturalnych procesów, mechanizmów, jakie zachodzą w przyrodzie, mogą całkiem przypadkiem w rewolucyjny sposób zmienić naukę i gospodarkę" – powiedziała w rozmowie z PAP prof. Danuta Maria Antosiewicz z Wydziału Biologii Uniwersytetu Warszawskiego, która zajmuje się badaniami roślin transgenicznych.

Tak też się stało w przypadku technologii transformacji roślin, której używa się do wytwarzania roślin modyfikowanych genetycznie. To natura pokazała naukowcom coś, co sama robiła już od mileniów i to dzięki niej jesteśmy w stanie wpływać na zmiany w budowie i funkcjonowaniu roślin.

Bakteryjny koń trojański

"Gdy chodzi się po lesie, można czasem zauważyć na roślinach bulwowate narośla. Występują np. na łodygach roślin, na pędach – zarówno u roślin zielnych, jak i na krzewach czy drzewach" – wylicza prof. Antosiewicz.

Naukowców zainteresowało, jak takie narośle powstają. Postanowili zbadać procesy, jakie zachodzą w ich komórkach. Okazało się, że narośla powstają w wyniku infekcji bakteriami ze szczepu Agrobacterium. To powszechnie występujące bakterie glebowe. Dla ludzi i zwierząt są zupełnie niegroźne, ale infekują wiele roślin – przede wszystkim rośliny dwuliścienne.

Kiedy nastąpi mechaniczne uszkodzenie tkanek, np. nadłamie się łodygi, z komórek rośliny uwalniają się cukry i związki fenolowe. To właśnie one są dla Agrobacterium sygnałem do infekcji. Kiedy bakterie dostaną się do rośliny, przenoszą do genomu komórek pewne swoje geny. Chcą sprawić, by roślina zaczęła produkować wykorzystywane przez nie związki pokarmowe.

"Stransformowane komórki roślinne w obrębie narośli stają się więc dla bakterii czymś w rodzaju fabryki pożywienia" – porównała badaczka.

Agrobacterium tumefaciens na korzeniach fot. Clemson University - Wikimedia Commons
Fot. Clemson University/1436062/CC BY-SA 3.0/Link

Agrobacterium tumefaciens na korzeniach.

 
Daj to wrzosom. Będą uginać się od kwiatów
Przeczytaj także
Daj to wrzosom. Będą uginać się od kwiatów

W komórce Agrobacterium oprócz głównego chromosomu znajduje się mała, kolista cząsteczka DNA – plazmid Ti (Tumor inducing). Do genomu rośliny włączany jest tylko fragment plazmidu – tzw. T-DNA (Transfer DNA). W obrębie tego odcinka znajdują się informacje (geny), które po integracji z genomem komórki roślinnej sprawiają, że komórki te zaczynają się intensywnie namnażać i produkować odpowiednie dla bakterii związki pokarmowe.

"Poznanie tego procesu było pierwszym krokiem do tworzenia przez człowieka roślin modyfikowanych genetycznie z wykorzystaniem bakterii glebowej Agrobacterium – czyli procesu transformacji roślin na ogromną skalę. Pierwsze rośliny transgeniczne powstały w roku 1984 i wytwarzane są podobną metodą do dziś" – mówi prof. Antosiewicz.

Włamać się do włamywacza

To wszystko jest możliwe dzięki odkryciu, że bakterię można skłonić do włączenia w genom roślinny zupełnie innych genów – tych, na których nam zależy – zamiast tych, które umożliwią bakterii produkcję związków pokarmowych. Trzeba tylko znać reguły budowy bakteryjnego plazmidu Ti (m.in. chodzi o to, żeby włączyć pożądane geny pomiędzy sekwencje graniczne odcinka T-DNA).

"Zmodyfikowany plazmid wprowadzamy do komórki bakterii. A ona - nie podejrzewając podstępu - wprowadzi do genomu rośliny to, co chcemy" – zaznacza biolożka.

Szczep Agrobacterium ze zmodyfikowanymi plazmidami wprowadza się do uszkodzonej tkanki roślinnej - np. liścia znajdującego się na pożywce. Tam dochodzi do transformacji komórek roślinnych.

Manipulując składem pożywki roślinnej - np. za sprawą hormonów roślinnych - można doprowadzić np. do tego, że komórki zawierające obcy gen zaczną się dzielić i różnicować w pędy. Pędy te są potem przekładane na inną pożywkę, która z kolei umożliwia formowanie się korzeni.

transformacja genetyczna Agrobacterium fot. Seb951 CC BY-SA 3.0 Wikimedia Commons Fot. Seb951/CC BY-SA 3.0/Link

Transformacja genetyczna Agrobacterium.

"W ten sposób z jednej zmodyfikowanej genetycznie komórki – w wyniku transformacji – można wyhodować całą transgeniczną roślinę" – wyjaśnia rozmówczyni PAP.

Nieprzewidywalne przełomy

"Na początku, na etapie badań podstawowych, nie było wiadomo, jakie będą wyniki badań i do czego możemy je wykorzystać. A w tym przypadku odkrycie i poznanie mechanizmów zachodzącego w naturze procesu transformacji komórek roślinnych przez bakterie Agrobacterium było rewolucyjne – otworzyło szeroką ścieżkę badań w zakresie genetycznej modyfikacji roślin" – podsumowuje naukowiec.

System z użyciem bakterii jest ciągle jeszcze najprostszy i najbardziej wydajny, jeśli chodzi o modyfikacje genetyczne roślin. Choć wciąż istnieją rośliny (m.in. trawy czy banany), u których ta metoda nie spisuje się zbyt dobrze i trzeba się uciekać do metod bardziej złożonych.

"Rośliny modyfikowane genetycznie powstały dla celów naukowych. I ciągle są przez badaczy na całym świecie wykorzystywane, by np. poznawać funkcje pojedynczych genów. Żywność modyfikowana genetycznie jest tylko częścią zastosowań genetycznie modyfikowanych roślin" – kończy prof. Antosiewicz.

2017-01-25
Źródło: Ludwika Tomala, PAP – Nauka w Polsce www.naukawpolsce.pap.pl, zdjęcie tytułowe: C-M/CC BY-SA 3.0/Link

Tagi
Więcej na ten temat
 

Komentarze

Dodaj komentarz
Jeszcze nikt nie skomentował tego artykułu. Może będziesz pierwsza/-y? Zajrzyj na Forum ZielonyOgrodek.pl